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Abstract—A variational method is presented for solving eigenvalue problems which arise in connection
with the analysis of convective heat transfer in the thermal entrance region of ducts. Consideration is
given to both situations where the temperature profile depends upon one cross-sectional co-ordinate
(e.g. circular tube) or upon two cross-sectional co-ordinates (e.g. rectangular duct). The variational
method is illustrated and verified by application to laminar heat transfer in a circular tube and a
parallel-plate channel, and good agreement with existing numerical solutions is attained. Then, appli-
cation is made to laminar heat transfer in a square duct as a check, an alternate computation for the
square duct is made using a method indicated by Millsaps and Pohlhausen. The variational method
can, in principle, also be applied to problems in turbulent heat transfer.

Résumé—Une méthode variationnelle est présentée pour la résolution des problémes de valeurs
propres qui se présentent dans ’analyse de la transmission de chaleur par convection dans la région
d’entrée des conduites. On considére les deux cas dans lesquels le profil des températures dépend soit
d'une seule coordonnée dans la section droite (c’est-a-dire tuyaux circulaires) ou de deux coordonnées
(tuyaux rectangulaires). La méthode est vérifiée par application a Ia transmission de chaleur laminaire
dans un tuyau circulaire et dans un canal a faces planes paralitles, on obtient un bon accord avec les
solutions numériques existantes. Une application est faite ensuite 2 la transmission de chaleur laminaire
dans une conduite carrée. A titre de contrdle, un calcul différent pour la conduite carrée est effectué
en utilisant la méthode indiquée par Millsaps et Pohlhausen. Cette méthode variationnelle peut égale-
ment étre appliquée aux problémes de transmission de chaleur turbulente.

Zusammenfassung—Zur Losung von Eigenwertproblemen des konvektiven Wérmeiibergangs beim
thermischen Einlauf in Kanille wird eine Variations-methode mitgeteilt. Es wird sowohl der Fall
betrachtet, dass das Temperaturprofil von einer Querschnittskoordinate (z.B. Kreisrohr), als auch
jener, bei der es von zwei Querschnittskoordinaten (rechtwinkliger Kanal) abhingt. Die Variations-
methode wird erldutert und auf den laminaren Wirmeiibergang im Kreisrohr und im ebenen Spait
angewandt, wobei mit den bestehenden numerischen Losungen eine gute Ubereinstimmung gefunden
wird. Sodann wird die Methode auf den laminaren Wirmeiibergang im quadratischen Kanal
angewendet und mit einer Iterationsrechnung nach Millsaps und Pohlhausen verglichen. Prinzipiell
kann die Variations-methode auch auf Probleme des turbulenten Wirmeiibergangs angewendet werden.

Abstract—TagTcA BapHanMOHHLI METON pemieHus 3aja4l OTHICKAHMA COOGCTBEHHHX B3Ha-
YeRMfi ypaBHEHMS, OCHOBAHHHN HA aHaAM3e KOHBEKTHBHOrO TenmnooOMeHa BO BXOAHOM
ob6nacTH KaHanoB. PaccMaTpuBaloTCA XBa Ciaydas: OAWH, KOTAa TeMIepaTYpHHRt mpodiiib
3aBHCHT OT OZTHON KOOPRAMHATH MOMEPEYHOro CedeHMA (HampuMmep, Kpyriaada Tpyba), u BTopo#
— OT ABYX KOOPAMHAT MONEPEYHOro CeYeHHA (HANPHMEP, KaHAJ NPAMOYTOabLHOro npoduns).
Bapnau#oHHHN MeTOA WINOCTPUDYETCA M HOXTBCPKRAETCH NPHMEHEHHMEM ero K CaydasaM
TenioolMeHa TIpM JIAaMUHAPDHOM IIOTOKe B Kpyrio#t Tpyfe m B NNOCKO-NAPATIENbHOM
KaHaje; NMOJYYaeTCH XOpollee COBNAREeHHE C CYINeCTBYIOUIMMH YHCIEHHLIMM PpellleHNAMM.
Ba'reu, 9TOT MeTOol MPHMMEeHAETCA K Tennooﬁueﬂy B YCIOBHMAX JIAMKHAPDHOTO MOTOKA B KaHaje
C KBaJPaTHHIM npodnieM. B nocnenneM caydae AJIA KORTPOJIA HPOBENH PACUET 110 YKa3aHHOMY
Muxnncancon n IlonbxayaemoM Metony. B mpurmnne BapHanmMORHLIA METOJ MOMKHO TakKme
NpUMEHNTL U K 8afayaM TenjooGMeHa B YCIOBMAX TypOyJeHTHOro MOTOKA.

* At present, Professor of Mechanical Engineering, University of Minnesota Minneapolis 14, Minnesota.
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NOMENCLATURE
A,:;, constants in eigenfunction equation (8);
a,  half-height of parallel plate channel;
half-length of side of square duct;
C,, coefficients in temperature distribution;
¢, specific heat at constant pressure;
d, tube diameter, 2r,;

' in equations (4a) and (10a);

integrals used in the variational pro-

] . . .
j functions of cross-section co-ordinates
1
j cedure;

I,

J,  variational expression, I, — Bil,;

k, thermal conductivity;

N, normal direction;

n, index number of eigenvalue;

Prandt! number, v/a;

p,  number of terms in eigenfunction equa-
tion (8);

0O, heat transfer rate per unit length;

g,  heat transfer rate per unit area;

Re, tube Reynolds number, wd/v;

Re,, channel Reynolds number, wa/v;

R,, nth eigenfunction;

R,;, functions in eigenfunction equation (8);

r, radial co-ordinate; r,, tube radius;
T, static temperature; T,, wall temperature;
T,, bulk temperature; 7T, entering
temperature;;
w, axial velocity distribution; w, average
velocity;
cross-section co-ordinate; X = x/a;
cross-section co-ordinate; Y = y/a;
axial co-ordinate; Z = z/a;
thermal diffusivity, k/pc,;

,] nth eigenvalue;

T f,», cross-section co-ordinates;
J

N*\Fu}(

-

d;(BwP

3
5

v,  kinematic viscosity;
p, density;

¢,  fully developed temperature distribution
in square duct;

Subscript:
fd, denotes fully developed condition.
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INTRODUCTION

IN a previous paper [1], it was shown that
variational methods could be successfully applied
to the computation of the fully developed heat
transfer characteristics for forced-convection
flow in passages. Here, attention is directed to
the thermal entrance region of flow passages.
Our aim is to formulate and apply a variational
procedure which may be used to determine
entrance-region heat-transfer results. To illus-
trate the method and to establish confidence in
its predictions, variational calculations are first
carried out for the circular tube and the parallel-
plate channel, and comparisons are made with
exact (numerical) solutions available in the
literature. Then, the variational method is
applied to the square duct, for which there are no
entrance-region calculations in the literature and
for which an exact solution has not been possible.t
In all the examples considered, the flow is
laminar and fully developed, while the heat input
is uniform along the length of the passage.
However, the variational method may also be
applied to the isothermal-wall boundary condi-
tion and to turbulent flow.

DESCRIPTION OF THE VARIATIONAL METHOD

General remarks

As early as 1885, it was demonstrated by
Graetz [2] that the temperature solution in the
thermal entrance region of a passage could be
formulated as an eigenvalue problem. His
analysis was concerned only with fully developed
laminar flow in a circular tube having uniform
wall temperature. Later, it was found [3-7] that
the eigenvalue formulation would provide
entrance-region results for both fully developed
laminar and turbulent flows in circular tubes and
parallel-plate channels for either uniform wall
temperature or uniform wall heat flux. The same
sort of formulation will apply to other non-
circular ducts, as will be shown in a succeeding
section.

t added in proof: A paper, which appeared after this
work was completed, gives some approximate results
for rectangular ducts with boundary conditions different
from those treated here. This work by S. C. R. Dennis,
A. McD. Mercer, and G. Poots, appeared in Quarr.
Appl. Math. 17, 285 (1959).
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To illustrate the way in which eigenvalues
arise in the entrance-region heat transfer analy-
sis, consider the problem of laminar flow in a
circular tube with uniform wall heat flux. As
shown in [6], the longitudinal variation of the
wall temperature corresponding to the pre-
scribed wall heat flux ¢ may be written as

T,—T, 11, 4zjr,

qro/k 24 + Re Pr

+ > GReen (- 2)

n=1

+

where T, is the temperature of the fluid entering
the tube and z is the distance measured from the
entrance of the heated section. In the expression,
B and R,, respectively, represent the eigenvalues
and eigenfunctions of the following equation:

re d [: an
T d(rire) 1o d("/"o)] +
r

+r1-(5)] =0 @

0
dR,fdr =0atr=0andr=r,

Solutions of this homogeneous equation with
homogeneous boundary conditions are possible
only for a discrete, though infinite number of £2
values. Each B which permits a solution is
called an eigenvalue, and the function R,
associated with the eigenvalue is called an eigen-
function. Equation (2) is a special case of the
general Sturm-Liouville type. From Sturm-
Liouville theory, it is noted in [6] that:

§3 Irire — (r/rel®} [(r/ro)* —
— $ (r/ro)* — 7/24] Rad(r/ro)

3 Trfro — (r/roPIRE d(r/ry)

From this, it is seen that once the eigenfunctions
R, are known, the coefficients C, of equation (1)
.may be evaluated. So it is apparent that a know-
ledge of the eigenvalues and eigenfunctions of
equation (2) holds the key to the temperature
solution (1). Since the 8¢ are all positive, it is
seen that the series contribution to equation (1)
dies away for large values of z. Thus, the series is
only important iu the entrance region and
consequently, the eigenvalue problem is of

L

Cn = = (3)
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interest only in connection with entrance-region
heat transfer results. For the uniform wall
temperature problem, the knowledge of eigen-
values is not only necessary in the entrance
region, but also in the fully developed domain.*

Our goal here is to present and apply a varia-
tional procedure for solving eigenvalue problems
which may arise in connection with entrance-
region heat transfer computations. The varia-
tional method is especially advantageous for
the lower eigenvalues, and because of this, it
serves to compliment the approximate tech-
niques of [8-10] which work best for higher
eigenvalues.

Consideration will be given to two general
types of eigenvalue problems which may be of
heat transfer interest. The first type arises when
the temperature profile depends only on one
cross-sectional co-ordinate, for example, the
radial position in a circular tube or the distance
from the center line of a parallel-plate channel.
We will call this the one-dimensional eigenvalue
problem. The second type arises when the tem-
perature profile depends upon two cross-section
co-ordinates, as in a rectangular duct. We will
call this the two-dimensional eigenvalue prob-
lem. Separate presentations and examples will be
given for each of the two types of problems.

The one-dimensional eigenvalue problem

We direct our attention to the Sturm-
Liouville eigenvalue problem, which will include
as special cases all heat transfer situations in
which the temperature depends on only one
cross-section co-ordinate. The Sturm-Liouville
problem with which we are concerned is to find
the eigenvaluest B2 and eigenfunctions R, of the
following equation:

%(e%') +fRo+Bg Ry =0 (48)

with the condition that on the boundary surface
R, =0o0rdR,/dy =0 (4b)
The functions e, f and g may depend upon the

* The first cigenvalue, at least, is ncoessary in the
fully developed region.

+ Only positive eigenvalues will arise in the problems
of interest here.
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independent variable . Now, according to the
calculus of variations (e.g. [11]), there corre-
spouds to equation (4) the following variational
expression J:

J=1I — 8L &)
I, = [} [e(dR,/dn)* — fRR)dy (©)
I, = [igR: dn @)

The variational expression J has a very special
property, namely, that it takes on a stationary
value, i.e. 8/ =0, when evaluated using a B2
and an R, which satisfy equations (4a) and (4b).
This characteristic suggests a procedure for
obtaining approximate solutions for the eigen-
values and eigenfunctions of equations (4a) and
(4b) by using the variational expression J. The
procedure is based on the Ritz method. Accord-
ing to this approach, a set of functions R,
R,s, . . . is selected, each of which satisfies the
boundary condition (4b). With these, the nth
eigenfunction R, is written as

p
Rn = Aannl + Anian +..= z lAm'Rm‘ (8)
where the A4,,, A,,, . . . are constants which
remain to be determined. As explained later in
detail, these unknown constants are found by
imposing the condition that J take on a stationary
value. An additional condition which must be
satisfied by the eigenfunctions is that they are
mutually orthogonal with respect to the weight-
ing function g, i.e.

I =,fzanRmd’7 =0,
m=n—1n—-2...,1 (9

Thus, for the nth eigenfunction, there are n — 1
orthogonality equations. As a consequence, it is
necessary to have at least n terms in the eigen-
function expression (8) to insure that the varia-
tional procedure can be fully carried through.
For each eigenfunction, the variational pro-
cedure may be reapplied successively using an
increasing number of terms in the series (8)
until convergence to a desired accuracy is
achieved. The convergence is hastened by
choosing the form of the R, in accordance with
any intuition or knowledge one may have about
the problem. We now turn to describing the
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detailed steps by which the variational procedure
is applied.

First eigenvalue: We begin by writing an
expression for R, in the form of equation (8),
selecting each function R;; in the series to satisfy
the boundary conditions. With this, the integrals
I, and I,, equations (6) and (7), are evaluated,
and the variational expression J, equation (5), is
constructed. For the first eigenfunction, the
orthogonality condition (9) need not be con-
sidered, since there are as yet no other eigen-
functions. To find a stationary value of J, the
expression is differentiated successively with
respect to each A4,, and each resulting equation
is set equal to zero. This provides a set of p
linear, homogeneous (right-sides equal zero),
algebraic equations involving the Ay, Ay, . - .,
Ay, A solution to such a homogeneous set is
possible only if the determinant of the coefficients
is equated to zero, and from this, there arises
a polynomial of which 82 is the smallest root.
Then, returning to the p homogeneous algebraic
equations, it is possible to find p — 1 of the
constants A4,,. The last coefficient is found by
some other condition such as normalizing, i.e.
setting /, = 1, or else by assigning some arbitrary
value to R, at some particular value of n. As has
already been noted, the procedure can then be
repeated using a larger number of terms in the
series (8) until a desired accuracy is attained.

Higher eigenvalues: The variational method
for higher eigenvalues follows a path similar
to that outlined for the first eigenvalue, except
that the orthogonality condition (9) must now
be incorporated into the procedure. This con-
dition requires that the eigenvalues and eigen-
functions be found in ascending order; since the
computation for the nth eigenfunction R,
assumes that all preceeding eigenfunctions are
known. By employing the orthogonality con-
ditions (9), it is possible to solve for n — 1 of
the A4,; in terms of all the others. Then, turning
to the expression for J, these particular 4,; may
be eliminated by direct substitution. Thus, the
number of A4,; remaining in J is reduced to
p — (n — 1). The stationary value of J is found
by differentiating successively with respect to
each of the remaining 4,; and equating each of
the resulting equations to zero. From these
p — (n — 1) linear homogeneous equations, the
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eigenvalue 82 can be found in a manner identical
to that described in connection with the com-
putation of the first eigenvalue. Then, the
constants A,; are computed using these
p — (n — 1) equations and the orthogonality
conditions. Because these equations are homo-
geneous, there will still be one undetermined A,
and this can be found by imposing additional
conditions as previously described. The process
can then be repeated, taking additional terms
in the series (8) until a suitable result for g2 and
R, is achieved.

To help fix these ideas, illustrative examples
will be given in a later section.

The two-dimensional eigenvalue problem

For the situation where the temperature
depends upon two cross-sectional co-ordinates,
the two-dimensional eigenvalue problems which
lend themselves to solution by the variational
technique are given by the following equation

f12):
)4

i(___ ¢R
o \ o) T oy

e 73,7—;‘) +fRu+ BigRn =0

(10a)
with the condition that on the bounding surface
R,=0 or 8R,/ON=0 (10b)

In this equation, the functions e, f and g may
depend on both co-ordinates 7 and 7. In a
manner parallel to the one-dimensional case,
there exists a variational expression J which
corresponds to the eigenvalue problem defined
by equations (10a) and (10b). Rephrasing the
findings of [12], J may be written as

St g1 an
T
L =j’ng§dmd’7= -

area

As before, the variational expression has the
particular property that it takes on a stationary
value when evaluated with an eigenvalue and
eigenfunction of equations (10a) and (10b).
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This characteristic serves as a basis of an
approximate method for finding the 2 and R,
which -is essentially identical to that which has
already been described for the one-dimensional
case. In applying the procedure to the two-
dimensional case, it is to be remembered that the
functions R,; which make up the series (8) may
now depend upon the two co-ordinates », and
7,, instead of on the single » as before. Also, for
the two-dimensional situation, the orthogonality
condition takes the form

I, = _’.J‘anRmdﬂld"h:()s
area
m=n-1,n-—2,...,1
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With these modifications, the detailed directions
for using the variational method in the one-
dimensional problem also apply here, and hence
they need not be repeated.

An entrance-region heat transfer computation
for a square duct will be carried out in a later
section, and this will aid in further clarifying the
application of the variational procedure to the
two-dimensional case.

APPLICATION TO A CIRCULAR TUBE

As a first illustration of the application of the
variational procedure, we consider the problem
of laminar flow in a circular tube with uniform
wall heat flux. The solution for the wall tem-
perature as a function of position along the tube
length has already been given in equation (1),
while the associated eigenvalue problem is
defined by equation (2). Now, for the uniform
heat flux problem, it is well known that the first
eigenvalue g} is zero, while R, is a constant
usually taken as unity. It is also easy to show
from equation (3) that C, = 0. So, with g% and
R, known, we turn our attention to finding the
second eigenvalue pB% and its corresponding
eigenfunction R,.

To apply the variational method, we first
compare equation (2) with the general form (4)
and find that

n=rlry, e=mn, f=0, g=12(1—19%
With this, the integrals I, I; and I, become
I = [in(i — 7)RyRmdy =0,

m=n—1,n-2,..,1

15)
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I, = [} n(dR,/dn)* dn,
L= [in(l —7)R:dn (16)

The next step is to write R, as a sum of terms in
the form of equation (8). In selecting the func-
tions Ry, we take cognizance of the boundary
conditions (2) and of the fact that the eigen-
functions can have both positive and negative
lobes between n =0 and % = 1. Functions
which immediately suggest themselves for the
role of Ry; are cos Omn = 1, cos =, cos 2my, etc.
So as a first approximation for R, in the form

(8), we write:
Rg =A21 + AnCOS‘n"r} (17)

Then, substituting in equations (15) and (16) and
carrying out the integration yields:*

A 1 12
I, =T21 +A,,(;z-—;—) =0 (18a)
L =4 (18b)
4
Az 112\ A2, 3
[2=—2%1+2A21A22(;2—;)+ 3 (1—;>
(18¢)

Now, using equations (18b) and (18c), we can
construct the variational expression

=1 — i
Then, by the orthogonality condition (18a), 4,,
can be eliminated from J, giving

A 12 1\2
3 [“"’“( ;)+

J=n"
5(-3) o

To find the stationary value, we take 8J/0A4,, = 0,
and from this it follows that

B2 = 28-997 (20)

Considering the simplicity of the approximation
and the relative ease of computation, this result
is in surprisingly good agreement with the exact
value [6]:

B = 256796 @1)

* It is to be remembered that R, , = R, = constant.
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The constants A4, and A4, remain to be deter-
mined. From the condition 8J/2A4, = 0. there
is obtained an algebraic equation which tells us
nothing about the constants. But, from the
orthogonality condition (18a), we have the
ratio of A4, to Ag. With this, the eigenfunction
expression (17) becomes

R; = Ay(0-087482 + cos ) (17a)
As expected in accordance with what has been
said in the general presentation of the varia-
tional method, there remains one undetermined
constant which must be found from other con-
ditions. To facilitate comparison with [6], we
impose the condition that R,(0) = 1, and with
this, equation (17a) becomes

R, = 0-080445 + 0:91956 cos =y  (17b)

The value of R at r=r, (n =1) plays an
important role in the wall-temperature com-
putation, as may be seen from equation (1).
The first approximation, equation (17b), gives a
value Ry(l) = —0-83911, as opposed to
—0-49252 from the exact solution. This compari-
son strongly suggests that a higher variational
approximation be carried out for R,.

As a logical refinement of equation (17), we
add on a term cos 27 and write

Proceeding as before, I, /; and I; are computed
by integration of equation (22). From the
orthogonality condition, [, =0, there is
obtained

A21 = 0'087482 Azg + 0'303964 A-_!3 (23)

Using I; and /,, the variational expression
J = I, — Bil, is evaluated to be

J = 2’46740 Azz —_ 3'55556 Angzs +
+ 9:86960 = A2, —
— BR[0-0870045 A2, — 0-0121336 Appdyy +
+ 0-115501 A4%; — 0-25 42%,] (24)

Ay can be eliminated from this expression by
using equation (23), leaving only Ag and A,..
The stationary value of J is achieved by taking
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0J[0Ag = 0, 8J/0Ays = 0. From this, there
results: .
aJ
A= 0—> (4-93480 — 0-170182 B1) A4, +
22
+ (—3-55556 + 00254293 B2)A4,5 =0
) 25
:—L = 0—> (—3-55556 + @
A,
+ 0-0254293 £3) A5, + (19:7392 — '
— 0-184805 B3)Ay5 = OJ

A nontrivial solution of this pair of linear,
homogeneous equations is possible only if

(4-93480 — 0-170182 83)
(—3-55556 + 00254293 £3)

(—3-55556 + 0-0254293 B)
(19-7392 — 0-184805 £2)

This determinant yields a quadratic equation for
B3, the smallest root* of which is

B = 256956 (26)

This is in remarkably close agreement with the
value 25-6796 from the exact solution. Now,
turning to the determination of the constants
Ay;, there is first obtained from either of equa-
tions (25) the ratio A,;/A,,. Next, from equation
(23), the ratio Ay /A, is found. Finally there is
imposed the condition that Ry(0) = 1. With this
information, all three constants may be calcu-
lated and the expression for R, becomes

R, = 0-109207 -+ 0-746309 cos m + .
+ 0-144484 cos 2 (22a)

The value of R, at the tube wall ( = 1) has
been already noted as playing an important role
in the heat transfer results. Equation (22a)
gives a value Ry(1) = —0-49262, which is in
excellent agreement with the result —0-49252
from the exact solution. In addition to R,(1), the
solution for the wall temperature variation as
given by equation (1) depends on the coefficients
C,. These constants can be computed from the
quotient of integrals given in equation (3).

* Since the value of 8,° associated with the exact
solution is an absolute minimum, it is clear that the best
result is achieved by selecting the smallest root.
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Utilizing equation (22a) for R,, the coefficient C;
is computed as 0-40680, which deviates by only

_0-8 per cent from the value 0-40348 given by the

exact solution.

This illustration demonstrates that the varia-
tional procedure is capable of providing excellent
heat transfer results. The high level of agreement
indicates that there is no need to refine R,
further. However, if an exact solution had not
been available for comparison purposes, it
would have been necessary to take a higher
approximation for R, to establish the level of
accuracy.

If desired, the variational method could now
be applied to the computation of the next eigen-
function R,. No essential changes in the method
are necessary, except that the expression for
R; in the form of equation (8) would likely
contain additional cosine terms. Also, in the
orthogonality condition (15), we would use
equation (22a) for the known eigenfunction R,,
while R, is a constant. However, since our
purpose in considering the circular tube has
only been to illustrate the variational method,
the computation for the higher eigenvalues will
not be carried out.

APPLICATION TO A PARALLEL PLATE CHANNEL

As a second example which may serve to
establish confidence in the variational procedure,
we turn to the problem of laminar flow in a
parallel-plate channel with uniform wall-heat
flux. Corresponding to the prescribed heat
flux, the variation of the wall temperature along
the length is given by:

T, — T, 17
gk BT

< B" V4
+ z Co Ro(a) exp { ~ (32) Re, Pr 3} @

nwl

The eigenvalues R, and eigenfunctions B, are
found from the following homogeneous system:

z/a
Re, Pr

d*R,
dR,/dy =0aty =0andy =a (28b)
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while the coefficients C,, are computed from the

ratio:

C,=—

fs[1 —(y/ay)l§(y/a)® — ¥(y/a)* — 39/280]R,d(y/a)
f3 1 — (v/a)* IR d(y/a)

(29)

Here again is a problem ideally suited for the
variational procedure. Comparing equation
(28a) with the general one-dimensional form
(4a), it is seen that

n=yla,e=1,f=0,g=1—2* (30
and the integrals I,, /; and /; become
Iy = [§(1 — 7 )RRy dy =0,
m=n—1,n-—2,...,1 (31a)

I, = [} (dR,/dn)* dn, L= fi(1 —7)R%dn (31b)

Since we are dealing with the case of uniform
wall heat flux, it follows that 82 = 0, R, = con-
stant, and C, = 0. So, attention can immedi-
ately be directed to the second ecigenvalue R,.
Drawing upon our experience with the circular
tube, we start out by writing R, in the form of
equation (22). Following through the operations
as before, it is found that

g =1839, R,= —03157 +
+ 1124 cos 7 + 0-1924 cos 2m  (32)

The numerical solution of [7] yields a value of
18-38 for B3. For Ry(1), which is needed in the
wall-temperature computation, {7] gives —1-27
as compared to —1-25 from the variational
solution (32). No results for C, are provided in
[7] and so this computation is omitted here.

From the excellent level of agreement which
has been demonstrated, one can draw a real
feeling of confidence in the utility of the varia-
tional procedure.

APPLICATION TO A SQUARE DUCT

For the previous examples which have been
presented, there exist numerical solutions in the
literature. These illustrations have been useful
in establishing a feel for the accuracy which
could be achieved by the variational method.
Now, we turn to a situation for which there are
no entrance-region calculations in the literature:.

Consideration is given to a laminar flow in a
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square duct, Fig. 1, having a heat flux which is
uniform both along the length and around the
periphery. Since this physicai problem is not
treated elsewhere, we start from first principles.

g

FiG. 1. Co-ordinate system for square duct.

The energy equation appropriate to the fully
developed laminar flow of an incompressible,
constant property fluid is

oT (8T &
El (a‘zﬂ—ya

where axial heat conduction has been neglected
compared to transverse conduction. Far down
the duct, 87/6z becomes a constant and the
condition of fully developed heat transfer is
achieved. A solution for the temperature distri~
bution in the fully developed regime has been
found by variational means in [1] as follows.

T—-T, 2Z

(33)

pCW

Otk ~ Repr T ¢ (343)
6= ﬁjz‘_y_z — 016032 [(X? — 1) +
+ (Y — 1)%] —0-13290
[(X2 — 1) (Y2 — )] + 006803  (34b)

where T, is the temperature of the fluid entering
the duct, Q is the heat transfer per unit length
and X, Y and Z are dimensionless co-ordinates.

Now, turning to the entrance-region, we
propose a solution in the following form which
will apply anywhere throughout the duct:

T—-T,_ 22
Q/8k Re, Pr

S N )
+- ZCanCXP( — Eea P Z{
n=1

+¢+

(35



VARIATIONAL METHODS FOR THE THERMAL ENTRANCE REGION OF DUCTS 169

In this equation, R, depends on both cross-sec-
tion co-ordinates X and Y. To find the governing
equation for R,, (35) is introduced into the
energy equation (33), from which it follows that:

&*R, , R,

(36a)

It is also easy to show that:

dR/dX =0at X + 1,

dR/dY =0at ¥ = +1  (36b)

So, once again we have an eigenvalue problem.
The first thought about solving equation (36) is
to try separation of variables, i.e. to suppose that
R, is a product of a function of X and a function
of Y. However, this approach is not successful
since the velocity distribution w/w is not in a
product form. Hence, it is necessary to deal with
equation (36a) as it stands.

The eigenvalue probiem as represented by
equations (36a) and (36b) is well-suited to be
attacked by the variational procedure. Com-
paring equation (36a) with the general two-
dimensional form (10a), it is seen that:

m=X,m=Y, e=1f=0,g=ww (37)

With this, the integrals /,, I, and /, as given by
equations (14), (12) and (13) become

Iy==4 [} 2 (W/W)RyRp dX dY = 0,
m=n-— 19""—2,...,1

(382a)
I, =4} [} [(0R,/6X)? + (6R,/8Y)*}dX dY (38b)
I, =4} [Xw/W)REdX dY (38¢)

Since we are dealing with the uniform heat flux
case, the first eigenvaiue B2 is zero, while
R, = constant and C, = 0. So consideration
can be immediately given to the second eigen-
value R,. In selecting a trial function for R,, we
are guided by prior experience with the parallel-
plate channel. For that configuration, an eigen-
value expression in the form of equation (22)
proved to be quite satisfactory. Generalizing
equation (22) to the two-dimensional case, we
write

Ry = Ay + AgpcosmX cosnY +
+ Apg [cosmX cos 27 Y + cos2nXcosn Y] (39)

where the constants A,;, 4;, and A,; remain to be
determined by use of the variational method.
The first step is to compute the 7 integrals of
equations (38). To carry out the integrations, a
knowledge of the velocity distribution w/w is
required. An accurate velocity profile has been
determined by variational means [1] as follows:

wiw = (X2 — 1)(Y?— 1) [2-:0983 +

+ 029181 (X* 4 Y?) 4 0-87546 X2Y?] (40)

Utilizing this expression in conjunction with
equation (39), the I integrals are found to be

— 00432577 Ay =0 (41a)
I, = 2n [A}; + 5A43,] (41b)

I = —44,, + 0-83989 A3, +
+ 2:0001 A2y + 1-16410 Aped,y  (41c)

Then, the variational expression J = I, — B3],
is constructed. Utilizing equation (41a), it is
possible to eliminate 4, from J, leaving only
As, and A,5. The stationary value is found by
setting 6J/6A4,, = 0 and 8J/0A4,, = 0. From this,
there is obtained

Y 0> (39478 — 16251 B Ay —
Az

— (111927 B Ay = 0 (422)
Y0 (11927 B A +

+ (197-39 — 3-9852 f5)4,3 =0  (42b)

By setting the determinant of the coefficients
equal to zero, there results a polynomial in 83,

the smallest root of which
B3 = 20-929 (43)
provides the second -eigenvalue. Next, the

constants A,,, A and A,, are found by utilizing
cither of equations (42) in conjunction with
(41a) plus an additional condition. In this in-
stance, as a matter of variety, we will impose the
condition that the eigenfunction be normalized,
i.e. I, = 1. There is thus sufficient information
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to determine all the constants, and the final ex-
pression for the eigenfunction R, becomes:

Ry = 0067685 — 0-92477 cosnX cosn Y —
— 020252 [cos X cos 2= Y +
+ cos 2 X cosnY] (44)

The last bit of information needed to compute
temperature distribution results from equation
(35) is the constant C,. Imposing the condition
that T = T, at the entrance section (Z = 0),
equation (35) becomes

LCR, = — ¢
na=]
Then, multiplying through by (w/w)R, and
integrating over X and Y from O to 1, it follows
by use .of the orthogonality condition (38a) that

(45a)

C, = — [fs (W/MR.$ dX dY

ARwwR dx dar 0

Carrying out the integration for R,, it is found
that

C, = —0-2467 (46)

This completes the computation for the second
eigenfunction. To check the level of accuracy of
the results, the variational procedure might be
reapplied to an expression for R, which contains
additional terms. But, we have decided instead
to redo the problem using a completely different
approximation procedure. The method is a
modification of an idea presented by Millsaps
and Pohlhausen [13] and its application to the
current problem is discussed briefly in the
Appendix. The results of this alternate compu-
tation are in very good agreement with those of
the variational method.

With the second eigenvalue at our disposal,
we can now turn to a discussion of the heat
transfer results. The temperature distribution
corresponding to the prescribed heat flux is
given by equation (35), where ¢ represents the
fully developed solution as written in equation
(34), while C,, R, and p2 are given by equations
(46), (44) and (43), respectively. Since we have
only one term of the series (C, = 0), attention
must be directed to that portion of the duct near
the fully developed region. When the heat flux
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is prescribed, the information of greatest
interest is the resulting wall temperature. In this
instance, where the heat flux is everywhere
uniform, the wall temperature will vary around
the periphery in any cross-section, as well as
along the length. Because of the symmetry of
the problem, consideration need only be giventoa
typical part of the wall: X =1, 0 Y < 1.
The wall-temperature result can be put in a
convenient form by first introducing the bulk
temperature T:

T,—T, _ 2z
Q/8k Re,Pr

and then, it may be observed that under fully
developed conditions

(47)

T —To)ya _
i =4 (48)
With these, equation (35) can be rephrased as:
T—-T,
(T_ Tb)fd
D Ckuero (- g 2)
”n =}
=1+ 3 (49)
Finally, at the wall (X =1, 0 < Y < 1), there
is obtained
T,— T, _
(Tw - Tb)ﬂi h
R, ' B (50)
a3, o (- wmm2)
0<Y<l1

where the series has been truncated after n = 2.
The group C,(Ry/$)y., as evaluated from the
variational method has been plotted as a solid
line on Fig. 2. In the region near the mid-wall
(Y =0), the group has negative values; while
near the corner, the group has positive values.
Using this information in conjunction with
equation (50), it is seen that for locations near
the corner, the wall-to-bulk temperature differ-
ence is greater in some part of the entrance-
region than it is in the fully developed region.
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F1G. 2. Shape of temperature distribution along wall.

Of course, without additional terms in the
series, it is not possible to know the extent of the
entrance region where (T, — T) > (Ty — T)sa-
This finding is somewhat surprising in view
of previous experience with one-dimensional
geometries such as the circular-tube and parallel-
plate channel. In those configurations, where
peripheral variations are absent, T,, — T, in the
entrance-region is always less than the fully
developsd temperature difference. In the present
instance, where there are peripheral variations,
it is the feeling of the writers that T, — T, is
not the governing driving force for heat transfer
at local positions around the periphery. Hence,
there would be no reason to expect that
the longitudinal variation of T, — T, should
follow the same trend here as was found in the
simpler geometries. The fact that the Jongitudinal
temperature variations are different in different
parts of the cross-section suggests that there is
little utility in computing average Nusselt
numbers.

The findings derived from the variational
method are closely confirmed by the alternate
computation of the Appendix, as may be seen
from the dashed line of Fig. 2. This good agree-
ment increases our confidence in the results, but

ultimate confirmation awaits some more exact -

solution, an approach to which is currently not
apparent to the writers.

CONCLUDING REMARKS

The examples considered here are meant to
illustrate the method and by no means exhaust
the problems to which the variational technique
can be applied.

Although the illustrations were concerned
with the uniform heat flux case, solutions for
uniform wall temperature are obtained with
equal facility. In the latter case, the functions
R,; which make up the eigenfunction expression
(8) would be selected to have zero values at the
wall, rather than zero derivatives as in the former.
It is also worth noting that the first eigenvalue
for the uniform wall temperature situation will
not be zero, nor will R, be a constant. Aside
from these matters, the method is applied exactly
as has been illustrated.

In principle, the variational procedure could
be applied to problems in turbulent heat transfer.
However, no work has thus far been done along
these lines.

APPENDIX

Alternate Eigenvalue Calculation
According to the idea of Millsaps and Pohl-
hausen [13], the eigenfunctions for a laminar
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convective, heat transfer problem are expanded
in terms of the eigenfunctions of the slug-flow
problem. For the square duct, such an expan-
sion for R, which is truncated after three terms is
Ry, =D ;cosmXcosmY +

+ Dy(cosmXcos2nY + cos2nXcosmY) +

+ Dglcos 2nXcos 2nY) (51)

where D,, D, and D, remain to be determined.
Introducing this expression into the governing
equation (36a) gives:
2m2DycosmXcosnY +

+ 572 Dy(cos mX cos 27 Y +

+ cos2rXcosnY)+

+8n2Dy(cos 2w X cos 2n Y) = BE(w/W)R,

(52)

Then, equation (52) is muitiplied through by
cos7Xcos 7Y and integrated over X and Y
from 0 to 1. Next, equation (52) is multiplied by
(cos 7 X cos 2nY + cos 2nX cos wY) and inte-
grated over the same range. Finally, this same
procedure is carried through with cos 27X
cos 27 Y. The result of these operations is three
linear, homogeneous, algebraic equations for
the D,, D, and D,, the coefficients of which
contain B2 To obtain a nontrivial solution, the
determinant of the coefficients is equated to
zero, and this gives:

B; = 20-222 (53)
which is rather good agreement with equation
(43) from the variational procedure. The
D-values are then found by returning to the
homogeneous algebraic equations, from which
two of the three D’s can be determined in terms
of the third one. The third D value may be left
unspecified or else arbitrarily assigned. This will
have no effect on the final result for the desired
quantity C,R, (see equation (35)), since a
change in the level of R, will be automatically
compensated by a corresponding change in C,.
Then, turning to the computation of C,, the R,
expression (with D-values now known) is intro-
duced into equation (45b) and the integration
carried out. With this, the final result for the
C,R, product is

E. M. SPARROW and R. SIEGEL

CyR, == 02140 cos n X cos 7Y +
4-0-01740 cos 2w X cos 27 Y +
+0-04698(cos mX cos 2n Y +

+cos2rXcosnY) (54)

Since the form of (54) is somewhat different
from that of the variational eigenfunction,
comparisons are best made by evaluating the
expressions at specific X- and Y-values. Fig. 2
shows a comparison made along the wall,
X =1,0< Y < 1, with quite good agreement.
A similar comparison has been made along the
center-line in the fluid, X = 0,0 < Y < 1, with
about the same level of agreement.
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